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Abstract 

The parasitic mite, Varroa destructor, has shaken the beekeeping and pollination industries 

since its spread from its native host, the Asian honeybee (Apis cerana), to the naïve European 

honeybee (A. mellifera) used commercially for pollination and honey production around the 

globe. Varroa is the greatest threat to honeybee health. Worrying observations include 

increasing acaricide resistance in the varroa population and sinking economic treatment 

thresholds, suggesting that the mites or their vectored viruses are becoming more virulent. 

Highly infested weak colonies, popularly dubbed “mite bombs”, facilitate mite dispersal and 

disease transmission to stronger and healthier colonies. Here, we review recent developments 
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in the biology, pathology and management of varroa, and unearth old knowledge that was lost 

in the archives. 

 

A Formidable Foe 

Remarkably adaptive and complex (Figure 1, key figure), Varroa destructor [1] (hereon referred 

to as varroa, unless otherwise stated) is linked to the worldwide decline in honeybee (Apis 

mellifera) health [2]. The global spread of varroa has been assisted by international trade (Box 

1, Figure 2a) [3], and while numerous mitochondrial haplogroups have been defined, the 

Korean K1 is the most pervasive (Figure 2b). No other pathogen or parasite has had a 

comparable impact on honeybees, in part because varroa only recently adapted from its 

original host, the Asian honeybee (A. cerana) (Figure 3) to exploit a naïve host with inadequate 

innate defenses. Varroa incurs only limited damage to A. cerana colonies due to several host 

defense mechanisms that impact varroa reproduction: mite infertility in worker brood [4], 

entombment of drone brood infested with multiple mites [5], and increased hygienic behavior 

[6]. The recently re-updated varroa genome (GCA_002443255.1) [7] will be a powerful tool to 

help understand varroa evolution in response honey bee novel defenses traits, host-switching, 

and successful global invasion. 

 

Varroa mites are “wingless, eyeless, and unable to crawl between widely spaced honeybee 

nests” [8]. Yet monitoring efforts show that honeybee colonies are almost universally infested 

[2]. Colonies often experience unnatural surges of varroa when nearby colonies collapse [9], 

potentially due to drift, and definitely due to robbing, when bees from healthy colonies exploit 

poorly defended, collapsing colonies to steal honey [8]. These varroa-laden, collapsing colonies 

are often referred to colloquially as “mite bombs.” Furthermore, varroa is a dangerously 

efficient vector of several bee viruses, which has dramatically worsened the virus landscape 

[10]. We have underestimated varroa’s adaptive ability: the mite has expanded its host range 

multiple times, has excellent chemosensing abilities [11], engages in chemical mimicry [12], and 

manipulation of its host [13], readily disperses within and between colonies [8, 13], engages in 

parental care [14], and rapidly evolves acaricide resistance [15]. Apicultural practices create a 
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virtually limitless supply of new host colonies. Most colonies are treated prophylactically with 

acaricides, limiting natural selection’s ability to improve host fitness against this parasite. 

However, there are signs in isolated A. mellifera populations that a host-parasite equilibrium 

can be achieved.  

 

Understanding the Varroa Life Cycle 

The life cycle is split into two distinct phases:  

• the reproductive phase that takes place inside honeybee brood cells, where a foundress 

mite raises her young 

• the dispersal phase—often incorrectly termed the phoretic phase—where mature 

female mites travel and feed on adult bees.  

 

Reproductive Phase 

In A. mellifera, varroa typically produces 0.7-1.45 mature female daughters in worker brood 

cells [16] and 1.6-2.5 daughters in drone cells [17]. Varroa use kairomones, a form of “chemical 

espionage” to invade appropriately aged larval cells [18] (Figure 4a), exhibiting an 8-fold 

preference for drone brood, where they have increased reproductive potential [19]. Relative 

proportions of worker and drone brood expand and contract throughout the season, and, 

therefore, so does the varroa population (Figure 4b). Inside the brood cell, the foundress hides, 

immobile, in the pool of food at the base of the cell, breathing through her raised peritreme 

that extends above the liquid food like a straw [20]. This immobility may be an adaptation to 

minimize removal by varroa-sensitive worker bees, as prior to and during capping, nurse bees 

frequently inspect the cell. After cell capping, the honeybee larva finishes the brood food, 

stretches out along the length of the cell and spins a cocoon. During this final larval feeding 

bout, the mite leaves the brood food, climbs onto the bee pre-pupae, and punctures a relatively 

large hole (100 µm) in the bee’s cuticle to create a feeding site for herself and future offspring 

[21]. This feeding site remains open due to anticoagulants in mite saliva and suppression of 

host wound healing [22]. 
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Feeding on the larval fat body is a prerequisite for varroa reproduction [23]. Signals from the 

bee larvae trigger mite reproduction [24] and influence the gender of the egg [25]. Sex 

determination in varroa is via arrhenotokous parthenogenesis: males are haploid with seven 

chromosomes, while females are diploid with 14 chromosomes. However, it remains unknown 

if sex determination in varroa involves a distinct genetic sex-determination locus, as is the case 

in honeybees and other hymenopterans.  

 

Initiating Oviposition  

Initiating oviposition is an energetically demanding task, and foundresses derive this energy by 

metabolizing consumed honeybee tissue. Proteomic [26] and transcriptomic [27] studies 

identified a drop in carbohydrate metabolic enzymes during foundress egg-laying, whereas they 

are upregulated before and after egg-laying [27]. This finely tuned expression pattern matches 

remarkably well with periods of unmetabolized nutrient transfer from the host [28] and the 

foundress [29] to the egg. In essence, varroa eggs contain host (bee) proteins that avoided 

digestion and passed through the foundress mite untouched by catalytic enzymes. The 

foundress also requires some larval proteins and hormones (e.g. ecdysone) to initiate egg-

laying [28, 30]. We speculate that foundresses sequester host molecules in their eggs, whereas 

peak enzyme abundance before and after oviposition fuels the energetic demands of egg 

production. Together, these observations paint a complex picture of nutrient transportation 

and sequestration from bee tissue through the foundress to her eggs. 

 

The foundress deposits the first haploid egg approximately 60-70 h after cell invasion. The 

foundress engages in careful parental care, gluing the male egg to the upper cell wall (the safest 

spot during bee pupation) to ensure that the male protonymph can walk away after hatching 

[14]. Male mites often die during host pupation, due to pupal movement and the pupal legs 

blocking his access to the communal feeding site [31]. The foundress lays an additional diploid 

egg every 30 h thereafter, depositing them further down the cell wall. When the first female 

matures, she mates with her brother on the communal fecal pile (Box 2). Males mate almost 

exclusively with freshly molted females, and stop mating with older females when a younger 
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one finishes her last adult molt [32]. If the male is dislodged or dies, the females emerge 

unmated. Formerly, it was believed these unfertilized varroa were unable to mate once they 

leave the cell, thus never producing viable offspring, not even haploid males. New research 

demonstrates that virgin varroa females can lay parthenogenic haploid eggs and then mate 

with their son, producing viable daughters under laboratory conditions [33]. Mites do not 

always initiate oviposition after cell invasion [34], potentially due to disruption in chemical 

communication [30]. Indeed, oviposition can be experimentally disrupted by applying (Z)-8-

heptadecene to brood cells before capping [35], and other compounds can disrupt host-seeking 

behavior [36]. 

 

Under laboratory conditions, a female mite can have up to seven reproductive cycles during her 

lifetime and lay up to 30 eggs [37]. At the time she first matures, she receives 30-40 

spermatophores via multiple matings with the male(s) in the cell, which she stores and uses 

during her lifespan [38]. In worker brood, a foundress with seven reproductive cycles would 

theoretically produce ~ 9 mature daughters, or ~ 18 mature daughters in drone brood. 

However, under field conditions it is estimated that each mite has 1.5 to 3 reproductive cycles 

[39]. 

 

Dispersal Phase 

When a parasitized honeybee emerges from its cell, it carries the mature female mites (mother 

and daughters) from the cell. The daughter mites frequently switch to a nurse-aged bee [13] to 

activate their ovaries, allow the spermatophores to mature [38], and feed on adult bees. It was 

long believed that varroa was a tick-like parasite, feeding on hemolymph. However, varroa’s 

mouthparts and digestive system are structured like an organism that feeds on semisolid tissue 

via extraoral digestion [40]. Varroa waste consists predominantly of guanine with traces of 

hypoxanthine, uric acid and caffeine [41], suggesting a protein-rich diet with limited water. New 

research overturned the decades-long belief that varroa feeds exclusively on hemolymph, 

demonstrating that the protein-rich fat-body is required for varroa egg production [23] and that 

stained fat body tissue was consistently detected inside the gut of mites feeding on honeybee 
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adults [42]. Inspection of varroa feeding sites reveals a feeding hole between the overlapping 

abdominal plates of the honeybee and degraded fat body cells beneath the intersegmental 

membrane, likely due to extra-oral digestion from mite saliva toxins [42].  

 

Parasite-Induced Changes Enable Colony Dispersal 

Varroa mites alter the hydrocarbon cuticle of their hosts and adapt their preference for 

different adult host bee life-stages based on colony-wide varroa infestation levels [43]. At low 

mite abundance, varroa preferentially parasitizes nurse bees, which frequently tend to brood 

and thus provide many opportunities to infest an appropriately aged larval cell. Varroa 

distinguishes nurse bees from foragers by different chemical cuticular signatures [44]. When 

mite abundance increases in the colony, the chemical profile of nurses and foragers tends to 

overlap, promoting mite departure by dispersing onto foragers [43]. Parasitized brood develops 

into adult bees that spend less time nursing and mature at an accelerated rate [45]. These 

workers thereby contribute less to colony productivity, and potentially promote varroa 

dispersal to new colonies [1, 46]. 

 

Virus Transmission 

By feeding on bee tissues, varroa acts as an efficient vector of pathogens between bees. Vector-

based disease transmission involves three main phases: 

• Acquisition: varroa feed on bee tissues, ingesting the pathogens that reside in those 

tissues 

• Mobility: varroa moves freely between different individual hosts 

• Transmission: during feeding, varroa introduces either secretions or partial gut content 

into the new host to complete the transmission.  

 

Efficacy of vector-mediated virus transmission depends on a range of secondary conditions, such 

as what pathogens are present where the mite is feeding, pathogen survival between mite 

acquisition and transmission, the susceptibility of the receiving host, and whether or not the 

pathogen also replicates in the mite (biological vector) or not (mechanical vector) [47, 48]. These 
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conditions differ significantly between individual viruses, impacting their virulence and their 

relationship with varroa [46]. 

 

Viruses Associated with Varroa  

Many viruses have been detected in honeybees, with new viruses constantly identified (Figure 

S1) [49, 50]. Nearly all honeybee viruses can be efficiently propagated (amplified) by injecting 

them into pupae or adult bees [51] similar to how varroa feeds on its host. In theory, therefore, 

all of these viruses can be transmitted by varroa, but in practice only Deformed wing virus (DWV) 

and Acute bee paralysis virus (ABPV) have a clear vector relationship with varroa [52, 53]. Both 

DWV and ABPV have several major co-circulating variants that differ in virulence characteristics 

[47, 48, 52, 54-56]. Sacbrood virus (SBV) does not seem to be transmitted directly by varroa but 

keeps popping up as a co-factor in natural varroa resistance/survival and virus adaptation [57], 

DWV-induced bee mortality [58], general virus-host interactions and immunity [59], inter-virus 

competition [54], and varroa behavior [60]. SBV induces pollen aversion in bees and has therefore 

a strong effect on nursing, division of labor, foraging and bee nutritional status [51, 61], which 

themselves play major roles in varroa-virus virulence [45]. For other viruses, the relationship with 

varroa is indirect or non-existent [62, 63], even if varroa-mediated transmission can be 

demonstrated experimentally. The most extreme example of this is Slow bee paralysis virus 

(SBPV), which can be transmitted by varroa at both individual and epidemic level [64], but whose 

natural prevalence in honeybee colonies remains marginal [63]. 

 

Many bee viruses use several different modes of transmission, each with its own virulence rules 

and needs, allowing different virus variants with different properties to co-exist simultaneously 

[47, 48, 55, 56, 58, 65]. Host range and geographic isolation are two other common sources of 

major virus variants [53], which can spread through the global trade in bees (Figure 2). Major 

variants vastly increase the genetic options for the virus to adapt and change virulence. This is in 

part because coexisting virus variants can act cooperatively, sharing and exchanging their 

strongest features for mutual benefit. For example, DWV-B replicates efficiently in varroa [47], 

which means that DWV-A (which can’t replicate in varroa [48]) can gain the replicative function 
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when co-circulating with DWV-B [66]. If the roles are reversed in other infection scenarios, both 

variants gain from their cooperation. Recombinant viruses, where variants exchange whole 

genome sections, can be particularly virulent [55], because they combine the strongest parts of 

the variants into a single genome, no longer relying on cooperation for increased fitness or 

virulence. 

 

Virus Symptoms and their Significance  

Apart from the secondary factors mentioned above, colony mortality (in particular, the timing of 

this mortality during the bee season) strongly influences the real-world relationship between 

varroa and individual viruses [46, 67]. As an obligate parasite, varroa survival is intimately coupled 

to the availability of colonies, and beekeeper management often guarantees a limitless supply. 

DWV infection and symptoms (dwindling colonies and flightless bees) peak during autumn, when 

the nectar flows have ceased and strong colonies rob honey from weak colonies, providing a 

timely opportunity for varroa (and DWV) ‘re-invasion’ into a strong colony immediately prior to 

overwintering [1]. The colony-level symptoms of DWV, plus seasonal timing, are therefore 

important features of varroa survival and transmission between colonies [46, 68]. The colony-

level symptoms and mortality associated with varroa-vectored ABPV infections occurs earlier in 

the summer [67], prior to the robbing season, hence missing the opportunity to transfer varroa 

into colonies capable of overwintering [46]. 

 

Viral infection can also impair honeybees’ social immunity defenses. For example, DWV-infected 

honeybees are less able to differentiate between varroa-infested and non-infested pupae [69]. 

Moreover, ABPV-infected pupae are efficiently removed by varroa-sensitive hygienic (VSH) 

behavior (Figure 1d), while DWV-infected pupae are not [70], which favors varroa-mediated 

transmission of DWV over ABPV.   Similarly, hygienic bees preferentially identify [47] and remove 

[71] pupae infected with the more virulent DWV-B variant, thus helping the less virulent DWV-A 

variant persist in the population. Additionally, ABPV’s higher virulence results in higher colony 

winter mortality (and thus varroa death), allowing for the gradual displacement of ABPV by DWV 

in varroa-infested colonies [62]. Overall, varroa is both vector and host for certain bee viruses, 
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particularly DWV-B, and is also behaviorally affected by both DWV and SBV [60], adding a whole 

new range of factors to the dynamic between varroa, bees and viruses.      

 

Virus Ripple Effects in New Territories 

Arrival of varroa into new territories profoundly impacts the health of the bees and adds 

significant financial costs to beekeepers. For example, varroa first reached New Zealand on the 

North Island in 2000 [72] and spread until all regions of the country were impacted by 2013. This 

clearly delineated wave of spreading varroa provided a unique opportunity to compare virus 

expression between parasitized and non-parasitized colonies. The initial arrival of varroa led 

directly to a 16% drop in colony numbers [73]. New Zealand exemplifies the dramatic impact 

varroa has on viral virulence in its host.  The rapid spread of varroa across the mainland of the 

country—less than 15 years to cover a 1,600-km territory—was accompanied by a dramatic 

change in the viral landscape, with each virus responding in a unique way [62].  

 

Varroa’s clear role in spreading the more virulent strains of different viruses was repeated in the 

Hawaiian archipelago [52]. The dynamic shifts in the observed viral titers suggest that the 

multiple viruses in honeybees interact to create a changing pathological landscape that peaks 

soon after varroa arrival (2-3 years for KBV, SBV and BQCV), before becoming more stable and 

predictable depending on the level of varroa infestation [62, 74]. However, DWV dynamics, 

regardless of varroa infestation, demonstrate escalating titers that continue to grow the longer 

the duration of varroa infestation, maintaining the DWV epidemic [62]. 

 

Viruses, Varroa Thresholds and Virulence Management  

If virulence is not punished, it will proliferate. Keeping weak colonies alive during winter, either 

through sharper treatment thresholds [75] or by combining them with strong colonies, 

encourages the transmission and survival of virulent varroa and virus traits, much like re-invasion 

does. One of the most important, and least understood, practices in virulence management is 

culling, which is largely absent in beekeeping, other than for American foulbrood. Moreover, 

since the only host for varroa is the honeybee, which is overwhelmingly controlled by 
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beekeepers, culling would be particularly effective for removing both inadequate honeybee 

genetics and virulent varroa-virus traits.  

 

Social Immunity  

In comparison to varroa’s original host (A. cerana), A. mellifera has fewer individual behavioral 

defenses against the mite, the most prominent being grooming, hygienic behavior and varroa-

sensitive hygiene.  

 

Social Apoptosis 

A. cerana worker brood is, perhaps counterintuitively, highly sensitive to a toxic protein 

secreted by varroa upon feeding. This “social apoptosis” limits varroa reproduction to drone 

larvae [76, 77]. This sacrifice has the dual effect of both disrupting the mite’s reproductive 

cycle, as well as producing higher levels of larval decay as a theoretical stimulus for adult 

workers to perform hygienic behavior [76]. This varroa toxic protein does not have the same 

lethal impact on A. mellifera worker bee larvae, thereby increasing manifold the amount of 

suitable brood for mite population growth [77]. New research shows that brood-related traits 

in A. mellifera could be contributing to hygienic behavior, VSH, and the suppression of mite 

reproduction [78, 79]. Brood frames transplanted from non-hygienic to hygienic hives and vice 

versa produced hygienic scores correlated with the donor colony, rather than the recipient 

colony. Infested brood that is uncapped and removed by VSH bees is also developmentally 

delayed compared to non-targeted brood [70]. While it is currently not known if this brood 

effect is a widespread phenomenon in A. mellifera, it could be an evolutionary remnant of the 

drastic social apoptosis strategy observed in A. cerana.  

 

Grooming 

Allo- and auto-grooming contribute to varroa resistance by both removing mites from adult 

bees and by physically damaging the mites, preventing them from seeking a new brood cell to 

infest [80]. Honeybees can initiate allo-grooming via a “grooming invitation signal” – a whole-

body vibrational dance lasting several seconds – which stimulates other workers to groom the 
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dancer. Grooming workers use their mandibles and forelegs to forcefully remove the mites 

from adult bees, leading to mite injury or death [81]. In the United States, scientists have 

produced a strain of bees, now commercially available, that exhibit elevated grooming and mite 

biting [82].   

 

Hygienic Behavior and Varroa-Sensitive Hygiene 

Hygienic behavior (Figure 1d) is one of the best-studied social immune defenses, but our 

understanding of this trait is still limited. Olfactory cues released from dead, diseased, or 

parasitized brood are thought to diffuse through the cell cap and stimulate adults to perform 

the behavior. New odorants linked to hygienic behavior include oleic acid, tritriacontene, 

heptacosene, and components of brood ester pheromone [70, 83, 84], but contrary to 

conventional wisdom, all of these molecules are relatively non-volatile. Therefore, we speculate 

that either hygienic workers are extremely sensitive to miniscule amounts of these vaporized 

compounds, or workers may periodically open and inspect brood cells, looking for contact cues.  

 

Hygienic removal of varroa-infested cells (also called varroa-sensitive hygiene, or VSH) is a 

specific subcategory of hygienic behavior that can only be partly predicted by general hygienic 

behavior tests such as the freeze-killed brood assay [85]. VSH-specific brood effects reduce 

mite fecundity [70, 84], and high-VSH colonies preferentially remove brood infested with 

multiple foundresses [86] or foundresses carrying highly virulent viruses [70] or DWV strains 

[47, 71]. Removing multiply-infested cells has the added benefit of deterring varroa 

outcrossing, potentially inhibiting the more virulent mites from spreading genetic material like 

acaricide-resistance (Box 2). Likewise, preferential removal of varroa carrying highly virulent 

viruses or DWV strains may set a virulence-limiting ceiling, helping to establish a new host-

parasite equilibrium.  

 

Genetic Foundation of Hygienic Behavior, VSH, and Grooming 

There have been a large number of gene differential expression studies that have analyzed 

transcript and protein profiles associated with hygienic behavior,  VSH  and to a lesser extent 
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grooming (reviewed in [87]). Some consistent trends include the differential regulation of 

odorant binding proteins, genes in the cytochrome P450 (CYP450) superfamily, and genes 

involved in biogenic amine chemoreception [87]. The differentially expressed genes are not 

always regulated in the same direction and there is a disconcertingly low degree of congruency 

among the differentially regulated genes identified by different researchers, but almost all have 

generally concluded that olfaction, neural signal transduction, and ligand degradation are key 

molecular processes underlying hygienic behavior and VSH [87]. This suggests that in addition 

to phenotypic plasticity – that is, one genotype giving rise to many phenotypes – varroa 

resistance mechanisms may also be presenting a degree of genotypic plasticity, i.e., different 

biochemical pathways (with presumably different underlying genetic control) that ultimately 

result in similar phenotypes. However, these are mostly behavioral traits, and thus also subject 

to colony-level dynamics and their internal and environmental drivers, which could be further 

sources of poor congruency. 

 

Honeybee Populations Surviving with Varroa 

When varroa first arrives to new regions, it typically wipes out the majority of the feral colonies 

within a few years. Yet after the initial wave of losses, feral populations often reappear and 

persist [88].  

 

Developing Varroa Resistance Without Human Intervention 

Evidence of adaptation can be seen in several subspecies, including A. m. scutellata, A. m. 

capensis and multiple populations of Western honeybees (ssp. carnica, mellifera and hybrids) 

(reviewed in [88]). In contrast to active selection via controlled breeding programs, natural 

selection gears adaptive change towards host-parasite equilibrium within the context of the 

local environment. Populations of surviving bees found within Europe and North America were 

very likely founded by feral colonies that characteristically had little management, and 

resistance traits persisted through the genetic bottlenecks of progressive die-offs. The 

remaining colonies consistently presented varroa, but showed a lower colony mortality rate 

when compared to sympatric control colonies [88]. 
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Conserved Traits in Naturally Resistant Bees 

Varroa resistant populations share multiple traits that permit survival despite parasite infection 

(reviewed in [87]). The Gotland “Bond bees” and the Arnot forest bees have consistently 

smaller colony sizes than commercial control stocks and a greater tendency for swarming [89, 

90], and the Gotland and French populations both display reduced varroa reproductive success 

[91]. Evidence for VSH and mite-targeted grooming in these naturally-adapted populations has 

so far been mixed [92-94]. Despite adapting independently, the surviving populations seem to 

share a handful of common traits that work additively and permit prolonged survival [88, 95]. 

Often these survival traits are not well-aligned with the needs of commercially managed stock, 

where large populations, early and prolonged brood rearing, and no swarming are prized. One 

of the adaptations of naturally varroa-surviving honeybee populations is a highly elevated rate 

of re-capping behavior, which may disrupt varroa-reproduction without incurring social 

apoptosis, thereby significantly reducing the colony-level cost of natural varroa defense and 

improving the probability of colony survival [95].  

 

Breeding Commercially-Viable Resistant Stock 

A few commercial beekeepers have stopped chemical varroa interventions and continued to 

select for commercially desirable traits like honey production in their bees in France [96] and 

Norway [93]. Commercially-viable honey-producing stock since before the arrival of varroa, 

these populations display the same reduced mite reproductive success seen elsewhere [95], 

potentially due to ecdysone disruption in the bees [30] (which varroa requires for reproduction 

but cannot biosynthesize) or due to interruptions in the reproductive cycle by behaviors like 

brood removal and cell recapping. Some scientists have called for new methods of bee breeding 

that do not involve regular acaricide treatment, advocating that by increasing selective 

pressure, natural selection will evolve host-parasite equilibriums [97]. However, because of 

horizontal parasite transfer [8] this could threaten the livelihood of many beekeepers in the 

vicinity. 
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An integrative method, involving treatment by necessity and selective queen rearing is 

recommended for those attempting to breed varroa-resistant bees. While field assays for 

measuring varroa resistance traits, like the VSH and grooming tests, are prohibitive for large-

scale testing by beekeeping operations, marker-assisted selection via genetic or proteomic 

testing has been demonstrated to be economically viable [98]. However, if the speculated 

genotypic plasticity described above is occurring, that would mean that different honeybee 

populations may have different genetic or expression markers, which would complicate the 

utility of this approach. This hypothesis remains to be tested, which will be an important step 

for determining the usefulness of this technique on a large geographic scale.  

 

Concluding Remarks: The Looming Threats of Other Mites 

We are still learning about varroa and how to control it sustainably (see Outstanding 

Questions), but new RNAi techniques that inhibit varroa reproduction may help in the future 

[99]. Additional insight into varroa’s basic biology, genetic architecture and demographic 

history are necessary to develop sustainable control measures and resistance breeding 

programs. The recently updated varroa genome [7] is a step toward leveraging population 

genomics and to understand varroa diaspora success despite reduced genetic diversity. But we 

should simultaneously prepare for two other mites that may soon be spreading worldwide. The 

cryptic V. jacobsoni has already switched hosts multiple times and could already be following 

the same path as V. destructor – a path that we urge researchers to track using DNA barcoding.  

 

Another parasitic mite with multiple species, Tropilaelaps spp., has shown similar patterns, 

shifting from its original host, the Giant honeybee (Apis dorsata) to A. mellifera. Similar to 

varroa, currently only two of four species (T. mercedesae and T. clarae) parasitize the European 

honeybee [100], with T. mercedesae exhibiting a wider geographical distribution, which is still 

limited to East Asia. Rapid global trade and global warming could easily permit the wider 

distribution of Tropilaelaps to all regions inhabited by A. mellifera. Its biology and life cycle are 

poorly understood, making it difficult to develop approaches for management and control. 

Formic acid, thymol and chemical acaricides used for varroa treatment are being adapted for 
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use against Tropilaelaps. Nevertheless, urgent research on how this pest has adapted to its new 

host is critical.  

 

In South East Asia, co-infestation of V. destructor and T. mercedesae is common, and Tropilaelaps 

mites often outcompete varroa [101]. Previous research reports that Tropilaelaps has many of 

varroa’s hallmark symptoms: it reduces host lifespan, lowers adult bee emergence weight, and 

promotes higher rates of wing deformity and higher DWV levels [102]. Experience with varroa 

and its rapid spread through globalization (Figure 2, Box 1) suggests that range expansion of 

Tropilaelaps is only a matter of time and countries should prepare for its arrival. 

 

 
Figure 1. Advances in our understanding of Varroa destructor. In this review we examine varroa’s 
biology, distribution, virus-vector dynamics, and honeybee selective breeding. (A) contrary to previous 
beliefs, varroa feeds primarily on the fat body of adult honeybees and brood, which fundamentally 
changes our understanding of the parasite’s basic biology. (B) Varroa is genetically labile, hybridizing and 
spilling over and back between Apis cerana and A. mellifera. (C) Varroa is also a highly efficient vector of 
honeybee viruses and drives changes in virus distribution, prevalence, and virulence. Despite this, some 
isolated bee populations survive without human intervention and (D) scientists and dedicated breeders 
are advancing marker-assisted selection techniques to enrich naturally occurring varroa-resistance traits 
in commercial stock. Bee cartoons are adapted from [78] with permission (Creative Commons Attribution 
4.0 International License) 
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Figure 2. Global distribution of varroa and its haplotypes. (A) Distribution of varroa haplogroups as 
determined by the mtDNA COX1 458 nucleotides identity on its original host A. cerana (inset map) and 
novel host A. mellifera (larger map). The color-coded points indicate the exact or approximated 
localization reported by literature and GenBank database for the Korean and Japanese strains. Arrows 
indicate the first known invasion waves originating from Japan and far-Eastern Russia. The number of 
haplotypes known for V. destructor differs depending on the mitochondrial markers selected (see 
Supplemental References) [103]. Here, 31 haplogroups were used, as reported in Supplemental Data. 
Interactive version of the map is available: mikheyevlab.github.io/varroa-mtDNA-world-distrib/. 
Constructed with Leaflet R package, ©OpenStreetMap contributors, CC-BY-SA, Tiles © Esri, DeLorne, 
NAVTEQ, Map tiles by Stamen Design, CCBY 3.0. (B) Phylogenetic relationship among the 60 haplogroups 
proposed for Varroa mites based on partial COX1 mitochondrial gene. Neighbor-joining tree using 
Tamura-Nei genetic distance model, V. rindereri as an outgroup and 1000 bootstraps. Nodes with circles 
indicated bootstraps over 80. Host were unspecified for 14 haplogroups in V. destructor mites. 

  

 
 

Figure 3. Timeline of discoveries. Landmarks in varroa species descriptions, global movement, and major 
developments in varroa research methods.  
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Figure 4. Varroa reproduction at the individual and colony level. (A) Individual varroa reproduction 
through cell invasion. While varroa transmit viruses to honeybee pupae and adults, there are many other 
routes of virus transmission both vertically via eggs and sperm, or horizontally via feeding, cell cleaning, 
cannibalism, contact, mating and ecological interactions with the environment and other insects. (B) 
Theoretical growth of a healthy colony without varroa mite treatments with a three-month winter. 
Colonies in the winter are typically comprised of all adult winter bees (dark blue) with very little worker 
brood (light brown) and low varroa populations. As new bees emerge, the colony expands rapidly in adult 
bees (yellow) and brood. By early spring the colony commences rearing drone brood (dark brown), 
preferentially invaded by varroa (red mites). After swarm season, bees cease rearing drones, forcing 
varroa to reproduce in worker brood. As mite levels increase, a single cell is co-infested by multiple 
foundresses, where the reproduction rate of each is reduced, but the rate of fertilized female offspring 
production increases. By late summer, both the bee population and brood nest area contract and varroa 
infestations increase above treatment thresholds on the adult bee population. Colonies simultaneously 
rear winter brood (light blue) that becomes the long-lived winter bees (blue) with an extra layer of fat 
body, which varroa feed on. As the colony stops rearing brood, varroa has no place to reproduce and their 
population sinks.   
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Box 1: How varroa became a global parasite 

Four known varroa species parasitize honeybees: V. destructor, V. jacobsoni, V. rindereri, and V. 

underwoodi. The first is by far the most widespread and economically damaging (Figure 2a). V. 

destructor switched hosts at least twice onto A. mellifera, probably around the 1950s. V. 

jacobsoni— also originally a parasite of A. cerana—independently shifted twice to A. mellifera 

in 2008 in Papua New Guinea. Its ability to spread beyond this region is not yet known. More 

possible jumps by undetermined species may have occurred in Philippines, but so far V. 

underwoodi remains a specialist on A. cerana [104] and V. rindereri on A. koschevnikovi and A. 

dorsata [105]. 

 

Until 2008, the only species parasitizing A. mellifera was V. destructor (though before 2000 it 

was identified as V. jacobsoni, until Anderson and Trueman [106] reported species differences). 

V. destructor was first reported on A. cerana in Java in 1904 (Figure 3). By 1957, it had jumped 

hosts to A. mellifera in Japan, and by 1963 in Hong Kong. Its range expanded quickly through 

global honeybee trade—both legal and illegal—and likely via swarms hitch-hiking on ships [107-

109]. Within less than half a century, varroa spread to all regions where humans manage A. 

mellifera colonies, except Australia, some extreme northern territories, and remote islands like 

the Seychelles and Comoros archipelagos.   

 

Though there are many haplogroups of V. destructor (Figure 2b), only two have successfully 

jumped to A. mellifera: the highly virulent, globally distributed Korean haplotype (K1) and the 

Japanese/Thailand haplotype (J1) confined to Japan, Thailand, and the Americas. K1 is thought 

to have first switched from A. cerana to A. mellifera near Vladivostok (north of the Korean 

Peninsula), while J1 made a similar jump in the 1960s following introduction of A. mellifera to 

Japan [110]. The two haplotypes are derived from genetically diverse mite populations that still 

infest A. cerana in Northeast Asia. The sympatry with A. mellifera offers additional spillover 

opportunities to other V. destructor lineages which cause additional threats if they spread out 

of Asia [103, 111]. Based on nuclear microsatellites, populations of V. jacobsoni and V. 
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destructor may hybridize in A. cerana in Thailand, potentially indicating less host specificity and 

a more labile genetic population structure than previously thought [112].  

 

 

Box 2: How Does Varroa Avoid Inbreeding Depression? 

Intense inbreeding is common in haplodiploid systems, where the potential depression of 

fitness may be reduced through purging and increased purifying selection facilitated by 

inbreeding [113]. How varroa are able to avoid inbreeding depression (reviewed in [114]) with a 

reported quasi-clonality on A. mellifera is still a mystery. The high rate of infertility in some 

mature mites potentially indicates a bottleneck that selects for offspring that successfully 

procreate despite the necessity of mating with a brother, flushing deleterious effects from the 

population. Ambrosia beetles that mate with a sibling had higher egg hatching rates than 

outcrossed females, indicating a population that does not suffer from inbreeding depression, 

but is prone to outbreeding depression [115]. Similar studies have not yet been conducted in 

varroa, though the lack of heterozygosity despite a 10% proportion of hybrid offspring (Five F1 

hybrids detected among 54 samples) suggests potential outbreeding depression, as the hybrid 

genetics do not enter the population [116]. 

 

Varroa engage in inbreeding most frequently during the first part of the beekeeping season, 

when varroa populations are low compared to host brood cells (Figure 4b). The likelihood of 

multiple mite invasion increases during the summer dearth, when the brood area contracts and 

multiple foundresses invade a single brood cell, allowing crossbreeding, recombination, and the 

potential spread of resistance to acaricides [117, 118]. Evidence of recombination is supported 

by the coexistence of diverse haplotypes and heteroplasmic mites in honeybee colonies [119]. 
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Outstanding Questions – How to Control Varroa Sustainably? 

 

Biotechnical Control 

While impractical on a large scale, backyard beekeepers could reduce varroa by implementing 

biotechnical controls and regular monitoring, including cutting drone comb, making varroa-free 

splits without capped brood, queen confinement to introduce an artificial brood break, colony 

culling, artificial swarms, and brood freezing to kill varroa. While none of these suffice on their 

own, inducing a brood-free stage forces varroa into the dispersal phase where they are more 

susceptible to organic miticides. 

 

RNA interference and Potential Risks 

RNA interference (RNAi), which enables the transient suppression of gene expression, is a 

budding technique for varroa control, but we should be cognizant of off-target effects. Even 

random sequences of dsRNA can cause shifts in gene expression, so long-term field trials must 

be conducted. Substantial efforts have been made to find gene targets causing mite mortality 

or sterility. While the finding that lithium chloride, which is commonly used in RNA purification 

protocols, is toxic to mites may bring previous positive results into question, the approach as a 

whole is not invalidated. New evidence suggests that honeybees share dsRNA between 

generations through jelly secretions, which may increase efficiency of dsRNA transfer between 

adults and brood.  

 

Ecdysone Disruption 

Mites need ecdysone hormone to stimulate vitellogenin production for their eggs, but 

ostensibly lack the molecular machinery to produce it themselves. Despite being necessary for 

insect metamorphosis, Conlon et al. found putative causal SNPs in varroa-resistant honeybee 

genes in the ecdysone-regulating pathway, making this a likely mechanism of varroa-resistance. 

If ecdysone-production genes can be disrupted via RNAi, varroa reproduction could be 

suppressed. However, it may be prohibitively difficult to ensure that this approach would not 

also disrupt honeybee metamorphosis. 
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Glossary 

 

American foulbrood (AFB): a fatal bacterial disease caused by the spore forming bacterium 

Paenibacillus larvae 

Arrhenotokous parthenogenesis: a natural form of asexual reproduction without fertilization, 

where the offspring develop into males 

Fat body: a critical organ in honeybees that functions like human kidneys and liver; it produces 

the egg-yolk precursor vitellogenin, critical for long-term survival and immune function. 

Foundress: the mother mite that reproduces in a cell 

Freeze-killed brood assay: a patch of brood is frozen with liquid nitrogen and the rate of 

removal scored. Very hygienic colonies remove the dead brood rapidly in less than 12 hours. 

However, this brood is simply killed through cold and so hygienic bees may not remove varroa 

infested cells, as varroa doesn’t normally kill the brood.  

Genotypic plasticity: many different genetic variations result in the same phenotype (e.g., 

when selecting for increased hygienic behavior, different genes have been linked to the trait in 

different bee populations). 

Grooming: a behavior where bees meticulously clean themselves or nestmates to get rid of 

parasites, often biting and damaging the parasite with their mandibles.  

Haplogroup: for varroa, an haplogroup is an ensemble of mitochondrial haplotypes sharing 

identical nucleotide sequence considering the 458 bp partial fragment of COX1 (cytochrome 

oxidase I subunit) but that could differ in other loci. 

Heteroplasmy: the presence of more than one type of organellar genome in a cell or individual. 

Hygienic behavior: the ability to remove dead brood rapidly from a hive, traditionally scored via 

the freeze-killed brood assay. 

Inbreeding depression: the reduced biological fitness in a given population due to inbreeding. 

Kairomone: a chemical substance (pheromone) released by one species and “overheard” by 

another species that uses it for personal gain, i.e. a parasite seeking a host eavesdropping on 

host specific chemical signals. 
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Marker assisted selection: the practice of using molecular markers (DNA, RNA, or protein) as 

indicators for desirable phenotypes to guide selective breeding. 

Dispersal phase: the adult life cycle stage of varroa, where they hitch rides and feed upon adult 

bee hosts. 

Peritreme: in varroa, a snorkel like appendage that extends from the spiracles and allows them 

to breathe while submerged. 

Phoretic phase: traditionally phorecy means that an organism (like a mite) uses another 

organism (like the honey bee) for transport, but specifically without feeding during that time. 

As varroa feed on their honeybee host during this phase, we advocate for a change in 

terminology to the dispersal phase.  

Resistance: the ability to survive, while simultaneously reducing the agent’s infectability, i.e. 

varroa-sensitive hygiene. 

Tolerance: the ability to survive, but without reducing the parasite or viral load, i.e. bees 

surviving with varroa, but carrying a high viral load that can spill over to other species. 

Varroa-sensitive hygiene (VSH): A form of hygienic behavior that specifically targets and 

removes brood infested by varroa mites. 
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